
Cows on the Planet (Dr. Tim Mcallister, Dr. Kim Stanford, Dr. Kim Ominski)
Explorez tous les épisodes de Cows on the Planet
Date | Titre | Durée | |
---|---|---|---|
15 Feb 2022 | How much water does it take to make a burger? | 00:35:36 | |
Citations Boulay, A.-M., Bare, J., Benini, L., Berger, M., Lathuillière, M. J., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A. V., Ridoutt, B., Oki, T., Worbe, S., & Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). The International Journal of Life Cycle Assessment, 23(2), 368–378. https://doi.org/10.1007/s11367-017-1333-8 Boulay, A.-M., Drastig, K., Amanullah, Chapagain, A., Charlon, V., Civit, B., DeCamillis, C., De Souza, M., Hess, T., Hoekstra, A. Y., Ibidhi, R., Lathuillière, M. J., Manzardo, A., McAllister, T., Morales, R. A., Motoshita, M., Palhares, J. C. P., Pirlo, G., Ridoutt, B., … Pfister, S. (2021). Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership. Ecological Indicators, 124, 107391. https://doi.org/10.1016/j.ecolind.2021.107391 Broom, D. M. (2019). Land and Water Usage in Beef Production Systems. Animals, 9(6), 286. https://doi.org/10.3390/ani9060286 Cabernard, L., & Pfister, S. (2021). A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Science of The Total Environment, 755, 142587. https://doi.org/10.1016/j.scitotenv.2020.142587 Chenoweth, J., Hadjikakou, M., & Zoumides, C. (2014). Quantifying the human impact on water resources: A critical review of the water footprint concept. Hydrology and Earth System Sciences, 18(6), 2325–2342. https://doi.org/10.5194/hess-18-2325-2014 Gerbens-Leenes, P. W., Mekonnen, M. M., & Hoekstra, A. Y. (2013). The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resources and Industry, 1–2, 25–36. https://doi.org/10.1016/j.wri.2013.03.001 Legesse, G., Cordeiro, M. R. C., Ominski, K. H., Beauchemin, K. A., Kroebel, R., McGeough, E. J., Pogue, S., & McAllister, T. A. (2018). Water use intensity of Canadian beef production in 1981 as compared to 2011. Science of The Total Environment, 619–620, 1030–1039. https://doi.org/10.1016/j.scitotenv.2017.11.194 Lutter, S., Pfister, S., Giljum, S., Wieland, H., & Mutel, C. (2016). Spatially explicit assessment of water embodied in European trade: A product-level multi-regional input-output analysis. Global Environmental Change, 38, 171–182. https://doi.org/10.1016/j.gloenvcha.2016.03.001 Maré, F. A., Jordaan, H., & Mekonnen, M. M. (2020). The Water Footprint of Primary Cow–Calf Production: A Revised Bottom-Up Approach Applied on Different Breeds of Beef Cattle. Water, 12(9), 2325. https://doi.org/10.3390/w12092325 Ridoutt, B. G., & Pfister, S. (2010). A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environmental Change, 20(1), 113–120. https://doi.org/10.1016/j.gloenvcha.2009.08.003 Ridoutt, B. G., Sanguansri, P., Freer, M., & Harper, G. S. (2012). Water footprint of livestock: Comparison of six geographically defined beef production systems. The International Journal of Life Cycle Assessment, 17(2), 165–175. https://doi.org/10.1007/s11367-011-0346-y Rodrigues Junior, U. J., & Dziedzic, M. (2021). The water footprint of beef cattle in the amazon region, Brazil. Ciência Rural, 51(8), 20190294. https://doi.org/10.1590/0103-8478cr20190294 | |||
31 Aug 2022 | Carbon sequestration and grazing | 00:34:02 | |
Join Tim and Kim as they welcome back Dr. Edward Bork of the University of Alberta to discuss his work on increasing carbon sequestration by judicious grazing by cattle. Are cattle the problem or part of the solution to climate change? Citations Baah-Acheamfour, M., Chang, S. X., Carlyle, C. N., & Bork, E. W. (2015). Carbon pool size and stability are affected by trees and grassland cover types within agroforestry systems of western Canada. Agriculture, Ecosystems & Environment, 213, 105–113. https://doi.org/10.1016/j.agee.2015.07.016 Bork, D. E., & Chair, M. (n.d.). A Reconsideration of Grazing Impacts on Soil Carbon in Northern Temperate Grasslands. 31. Carlyle, C. N. (n.d.). GRAZING EFFECTS ON CARBON STORAGE IN RANGELANDS OF THE CANADIAN PRAIRIE. 26. De Deyn, G. B., Cornelissen, J. H. C., & Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11(5), 516–531. https://doi.org/10.1111/j.1461-0248.2008.01164.x Shrestha, B., Chang, S., Bork, E., & Carlyle, C. (2018). Enrichment Planting and Soil Amendments Enhance Carbon Sequestration and Reduce Greenhouse Gas Emissions in Agroforestry Systems: A Review. Forests, 9(6), 369. https://doi.org/10.3390/f9060369 Whitehead, D. (2020). Management of Grazed Landscapes to Increase Soil Carbon Stocks in Temperate, Dryland Grasslands. Frontiers in Sustainable Food Systems, 4, 585913. https://doi.org/10.3389/fsufs.2020.585913 | |||
09 Jun 2022 | Why is beef so expensive? | 00:32:06 | |
Literature Cited Brooks, S., Leaver, A., Spence, M., Elliott, C. T., & Dean, M. (2017). Pragmatic engagement in a low trust supply chain: Beef farmers’ perceptions of power, trust and agency. Competition & Change, 21(2), 114–131. https://doi.org/10.1177/1024529417691053 Chamanara, S., Goldstein, B., & Newell, J. P. (2021). Where’s the beef? Costco’s meat supply chain and environmental justice in California. Journal of Cleaner Production, 278, 123744. https://doi.org/10.1016/j.jclepro.2020.123744 Fernandes, A. M., de Souza Teixeira, O., Rios, H. V., Canozzi, M. E. A., Schultz, G., & Barcellos, J. O. J. (2019). Insights of innovation and competitiveness in meat supply chains. International Food and Agribusiness Management Review, 22(3), 413–427. https://doi.org/10.22434/IFAMR2018.0031 Ijaz, M., Yar, M. K., Badar, I. H., Ali, S., Islam, Md. S., Jaspal, M. H., Hayat, Z., Sardar, A., Ullah, S., & Guevara-Ruiz, D. (2021). Meat Production and Supply Chain Under COVID-19 Scenario: Current Trends and Future Prospects. Frontiers in Veterinary Science, 8, 660736. https://doi.org/10.3389/fvets.2021.660736 Ma, M., & Lusk, J. (2021). Concentration and Resilience in the U.S. Meat Supply Chains (No. w29103; p. w29103). National Bureau of Economic Research. https://doi.org/10.3386/w29103 Meidayanti, K., Arkeman, Y., & Sugiarto. (2019). Analysis and design of beef supply chain traceability system based on blockchain technology. IOP Conference Series: Earth and Environmental Science, 335(1), 012012. https://doi.org/10.1088/1755-1315/335/1/012012 Nastasijević, I., Lakićević, B., & Petrović, Z. (2017). Cold chain management in meat storage, distribution and retail: A review. IOP Conference Series: Earth and Environmental Science, 85, 012022. https://doi.org/10.1088/1755-1315/85/1/012022 Patrice, T. (n.d.). COVID-19 and the Beef Supply Chain: An Overview. 12. Peel, D. (2021). Beef supply chains and the impact of the COVID-19 pandemic in the United States. Animal Frontiers, 11(1), 33–38. https://doi.org/10.1093/af/vfaa054 Rude, J. (2021). COVID‐19 and the Canadian cattle/beef sector: A second look. Canadian Journal of Agricultural Economics/Revue Canadienne d’agroeconomie, 69(2), 233–241. https://doi.org/10.1111/cjag.12277
| |||
10 Sep 2021 | Is antimicrobial resistance in cattle harming people?” | 00:31:45 | |
Join Dr. Tim McAllister of Agriculture and Agri-Food Canada as he discusses "super-bugs", antibiotic use by cattle, and his work comparing antimicrobial resistance in cattle and people.
| |||
24 Mar 2022 | How do you define sustainable beef? | 00:24:45 | |
Citations FAO. (2018). Nutrient flows and associated environmental impacts in livestock suppply chains: Guidelines for assessment. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. (2019). WATER USE IN LIVESTOCK PRODUCTION SYSTEMS AND SUPPLY CHAINS GUIDELINES FOR ASSESSMENT: Version 1. FOOD & AGRICULTURE ORG. Biodiversity and the livestock sector—Guidelines for quantitative assessment. (2020). FAO. https://doi.org/10.4060/ca9295en Environmental performance of feed additives in livestock supply chains. Guidelines for assessment. (2020). FAO. https://doi.org/10.4060/ca9744en Biodiversity and the livestock sector. (n.d.). 2. Environmental performance of animal feeds supply chains. (n.d.). 184. Environmental performance of animal feeds supply chains. (n.d.). 2. Environmental performance of large ruminants supply chains. (n.d.). 2. Environmental performance of large ruminants supply chains. (n.d.). 2. | |||
02 Sep 2021 | Are cows wasting human food or eating food waste? | 00:24:02 | |
Citation Dou, Z., Toth, J. D., & Westendorf, M. L. (2018). Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Global Food Security, 17, 154–161. https://doi.org/10.1016/j.gfs.2017.12.003 Forwood, D. L., Hooker, K., Caro, E., Huo, Y., Holman, D., Chaves, A. V., & Meale, S. J. (2020). Ensiling Unsalable Vegetables with Crop Sorghum to Produce High Quality Feed. Proceedings, 36(1), 113. https://doi.org/10.3390/proceedings2019036113 Forwood, D. L., Holman, B. W. B., Hopkins, D. L., Smyth, H. E., Hoffman, L. C., Chaves, A. V., & Meale, S. J. (2021). Feeding unsaleable carrots to lambs increased performance and carcass characteristics while maintaining meat quality. Meat Science, 173, 108402. https://doi.org/10.1016/j.meatsci.2020.108402 Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1–8. https://doi.org/10.1016/j.gfs.2017.01.001 Ominski, K., McAllister, T., Stanford, K., Mengistu, G., Kebebe, E. G., Omonijo, F., Cordeiro, M., Legesse, G., & Wittenberg, K. (2021). Utilization of by-products and food waste in livestock production systems: A Canadian perspective. Animal Frontiers, 11(2), 55–63. https://doi.org/10.1093/af/vfab004 Shurson, G. C. (2020). “What a Waste”—Can We Improve Sustainability of Food Animal Production Systems by Recycling Food Waste Streams into Animal Feed in an Era of Health, Climate, and Economic Crises? Sustainability, 12(17), 7071. https://doi.org/10.3390/su12177071 | |||
25 May 2022 | Livestock and global food security | 00:32:50 | |
Literature Citied Adesogan, A. T., Havelaar, A. H., McKune, S. L., Eilittä, M., & Dahl, G. E. (2020). Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Global Food Security, 25, 100325. https://doi.org/10.1016/j.gfs.2019.100325 Balehegn, M., Duncan, A., Tolera, A., Ayantunde, A. A., Issa, S., Karimou, M., Zampaligré, N., André, K., Gnanda, I., Varijakshapanicker, P., Kebreab, E., Dubeux, J., Boote, K., Minta, M., Feyissa, F., & Adesogan, A. T. (2020). Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Global Food Security, 26, 100372. https://doi.org/10.1016/j.gfs.2020.100372 Leroy, G., Boettcher, P., Besbes, B., Peña, C. R., Jaffrezic, F., & Baumung, R. (2020). Food securers or invasive aliens? Trends and consequences of non-native livestock introgression in developing countries. Global Food Security, 26, 100420. https://doi.org/10.1016/j.gfs.2020.100420 Vipham, J. L., Amenu, K., Alonso, S., Ndahetuye, J.-B., Zereyesus, Y., Nishimwe, K., Bowers, E., Maier, D., Sah, K., Havelaar, A., & Grace, D. (n.d.). No food security without food safety: Lessons from livestock related research. 16.
| |||
25 Aug 2021 | Can we make beef safer and prevent food-borne disease? | 00:33:59 | |
Citation Callaway, T. R., Carroll, J. A., Arthington, J. D., Edrington, T. S., Anderson, R. C., Rossman, M. L., Carr, M. A., Genovese, K. J., Ricke, S. C., Crandall, P., & Nisbet, D. J. (2011). Orange Peel Products Can Reduce Salmonella Populations in Ruminants. Foodborne Pathogens and Disease, 8(10), 1071–1075. https://doi.org/10.1089/fpd.2011.0867 Callaway, T. R., Edrington, T. S., Loneragan, G. H., Carr, M. A., & Nisbet, D. J. (n.d.). Shiga Toxin-Producing Escherichia coli (STEC) Ecology in Cattle and Management Based Options for Reducing Fecal Shedding. 31. Callaway, T. R., Edrington, T. S., & Nisbet, D. J. (2014). MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Ecological and dietary impactors of foodborne pathogens and methods to reduce fecal shedding in cattle1,2. Journal of Animal Science, 92(4), 1356–1365. https://doi.org/10.2527/jas.2013-7308 Escarcha, J. F., Callaway, T. R., Byrd, J. A., Miller, D. N., Edrington, T. S., Anderson, R. C., & Nisbet, D. J. (2012). Effects of Dietary Alfalfa Inclusion on Salmonella Typhimurium Populations in Growing Layer Chicks. Foodborne Pathogens and Disease, 9(10), 945–951. https://doi.org/10.1089/fpd.2012.1251 Munns, K. D., Selinger, L. B., Stanford, K., Guan, L., Callaway, T. R., & McAllister, T. A. (2015). Perspectives on Super-Shedding of Escherichia coli O157:H7 by Cattle. Foodborne Pathogens and Disease, 12(2), 89–103. https://doi.org/10.1089/fpd.2014.1829 Sapountzis, P., Segura, A., Desvaux, M., & Forano, E. (2020). An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms, 8(6), 877. https://doi.org/10.3390/microorganisms8060877 World Health Organization & Food and Agriculture Organization of the United Nations. (2016). Interventions for the control of non-typhoidal Salmonella spp. in beef and pork: Meeting report and systematic review. World Health Organization. https://apps.who.int/iris/handle/10665/249529 | |||
16 Nov 2021 | Do cattle have a role in regenerative agriculture? | 00:34:06 | |
Bibliography Braman, S., Tenuta, M., & Entz, M. H. (2016). Selected soil biological parameters measured in the 19th year of a long term organic-conventional comparison study in Canada. Agriculture, Ecosystems & Environment, 233, 343–351. https://doi.org/10.1016/j.agee.2016.09.035 Cicek, H., Martens, J. R. T., Bamford, K. C., & Entz, M. H. (2015). Late-season catch crops reduce nitrate leaching risk after grazed green manures but release N slower than wheat demand. Agriculture, Ecosystems & Environment, 202, 31–41. https://doi.org/10.1016/j.agee.2014.12.007 Entz, M. H., Baron, V. S., Carr, P. M., Meyer, D. W., Smith, S. R., & McCaughey, W. P. (2002). Potential of Forages to Diversify Cropping Systems in the Northern Great Plains. AGRONOMY JOURNAL, 94, 11. Entz, M., & Martens, J. T. (n.d.). Season-long Grazed Green Manure Systems Study. 17. Giller, K. E., Hijbeek, R., Andersson, J. A., & Sumberg, J. (2021). Regenerative Agriculture: An agronomic perspective. Outlook on Agriculture, 50(1), 13–25. https://doi.org/10.1177/0030727021998063 LaCanne, C. E., & Lundgren, J. G. (2018). Regenerative agriculture: Merging farming and natural resource conservation profitably. PeerJ, 6, e4428. https://doi.org/10.7717/peerj.4428 Martens, J. R. T., Entz, M. H., & Wonneck, M. D. (2015). Review: Redesigning Canadian prairie cropping systems for profitability, sustainability, and resilience. Canadian Journal of Plant Science, 95(6), 1049–1072. https://doi.org/10.4141/cjps-2014-173 Newton, P., Civita, N., Frankel-Goldwater, L., Bartel, K., & Johns, C. (2020). What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes. Frontiers in Sustainable Food Systems, 4, 577723. https://doi.org/10.3389/fsufs.2020.577723 Russelle, M. P., Entz, M. H., & Franzluebbers, A. J. (2007). Reconsidering Integrated Crop–Livestock Systems in North America. Agronomy Journal, 99(2), 325–334. https://doi.org/10.2134/agronj2006.0139 Schreefel, L., Schulte, R. P. O., de Boer, I. J. M., Schrijver, A. P., & van Zanten, H. H. E. (2020). Regenerative agriculture – the soil is the base. Global Food Security, 26, 100404. https://doi.org/10.1016/j.gfs.2020.100404 Thiessen Martens, J., & Entz, M. (2011). Integrating green manure and grazing systems: A review. Canadian Journal of Plant Science, 91(5), 811–824. https://doi.org/10.4141/cjps10177 Thiessen Martens, J. R., Lynch, D. H., & Entz, M. H. (2019). A survey of green manure productivity on dryland organic grain farms in the eastern prairie region of Canada. Canadian Journal of Plant Science, 99(5), 772–776. https://doi.org/10.1139/cjps-2018-0311 | |||
06 Jan 2023 | Cows, pandemics and climate change | 00:30:59 | |
Join Tim and Kim as they talk with Dr. Colleen Duncan of Colorado State University and Dr. Katie Steneroden of Iowa State University on potential cow-related pandemics of the future, the role of climate change in pandemics and the need for future fun fashion with hazmat suits in designer colors. Bibliography Bernstein, A. S., Ando, A. W., Loch-Temzelides, T., Vale, M. M., Li, B. V., Li, H., Busch, J., Chapman, C. A., Kinnaird, M., Nowak, K., Castro, M. C., Zambrana-Torrelio, C., Ahumada, J. A., Xiao, L., Roehrdanz, P., Kaufman, L., Hannah, L., Daszak, P., Pimm, S. L., & Dobson, A. P. (2022). The costs and benefits of primary prevention of zoonotic pandemics. Science Advances, 8(5), eabl4183. https://doi.org/10.1126/sciadv.abl4183 Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., McKeever, D., Mutua, F., Young, J., McDermott, J., & Pfeiffer, D. U. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences, 110(21), 8399–8404. https://doi.org/10.1073/pnas.1208059110 Magouras, I., Brookes, V. J., Jori, F., Martin, A., Pfeiffer, D. U., & Dürr, S. (2020). Emerging Zoonotic Diseases: Should We Rethink the Animal–Human Interface? Frontiers in Veterinary Science, 7, 582743. https://doi.org/10.3389/fvets.2020.582743 McDaniel, C. J., Cardwell, D. M., Moeller, R. B., & Gray, G. C. (2014). Humans and Cattle: A Review of Bovine Zoonoses. Vector-Borne and Zoonotic Diseases, 14(1), 1–19. https://doi.org/10.1089/vbz.2012.1164 Meurens, F., Dunoyer, C., Fourichon, C., Gerdts, V., Haddad, N., Kortekaas, J., Lewandowska, M., Monchatre-Leroy, E., Summerfield, A., Wichgers Schreur, P. J., van der Poel, W. H. M., & Zhu, J. (2021). Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal, 15(6), 100241. https://doi.org/10.1016/j.animal.2021.100241 Petrovan, S. O., Aldridge, D. C., Bartlett, H., Bladon, A. J., Booth, H., Broad, S., Broom, D. M., Burgess, N. D., Cleaveland, S., Cunningham, A. A., Ferri, M., Hinsley, A., Hua, F., Hughes, A. C., Jones, K., Kelly, M., Mayes, G., Radakovic, M., Ugwu, C. A., … Sutherland, W. J. (2021). Post COVID‐19: A solution scan of options for preventing future zoonotic epidemics. Biological Reviews, 96(6), 2694–2715. https://doi.org/10.1111/brv.12774 PREVENTING THE NEXT PANDEMIC: Zoonotic diseases and how to break the chain of transmission. (n.d.). | |||
08 Jul 2022 | More than milk and meat from cows? | 00:26:01 | |
Join Tim and Kim as they talk with Dr. Hsin Huang, Secretary General of the International Meat Secretariat about some of the surprising products that come from cows other than milk and meat. Citations Alam, A. Y. (n.d.). The challenge of dealing with animal derived ingredients in medical/surgical products. 3. Alao, B., Falowo, A., Chulayo, A., & Muchenje, V. (2017). The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability, 9(7), 1089. https://doi.org/10.3390/su9071089 Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology, 49(3), 278–293. https://doi.org/10.1007/s13197-011-0290-7 Khouw, B. T., Rubin, L. J., & Berry, B. (n.d.). Meat Animal By-Products of Pharmaceutical and Food Interest. 8. Quin, J. (2020). Medicines/pharmaceuticals of animal origin. 33. Singh, N., Halliday, H. L., Stevens, T. P., Suresh, G., Soll, R., & Rojas-Reyes, M. X. (2015). Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD010249.pub2 Toldrá, F., Reig, M., & Mora, L. (2021). Management of meat by- and co-products for an improved meat processing sustainability. Meat Science, 181, 108608. https://doi.org/10.1016/j.meatsci.2021.108608 | |||
12 Jan 2022 | Can grazing cattle help trees? | 00:32:51 | |
This episode looks into how grazing cows help trees. To look into this topic we've invited Amanda Miller a rangeland ecologist.
| |||
25 Sep 2021 | Manure vs chemical fertilizer, which is better for soil health? | 00:27:19 | |
Additional Music - Soviet March by Shane Ivers - https://www.silvermansound.com Citation Edmeades, D. C. (n.d.). The long-term effects of manures and fertilisers on soil productivity and quality: A review. 16. Geng, Y., Cao, G., Wang, L., & Wang, S. (2019). Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLOS ONE, 14(7), e0219512. https://doi.org/10.1371/journal.pone.0219512 Larney, F. J., & Angers, D. A. (2012). The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science, 92(1), 19–38. https://doi.org/10.4141/cjss2010-064 Larney, F. J., Buckley, K. E., Hao, X., & McCaughey, W. P. (2006). Fresh, Stockpiled, and Composted Beef Cattle Feedlot Manure: Nutrient Levels and Mass Balance Estimates in Alberta and Manitoba. Journal of Environmental Quality, 35(5), 1844–1854. https://doi.org/10.2134/jeq2005.0440 Larney, F. J., Hao, X., & Topp, E. (2015). Manure Management. In J. L. Hatfield & T. J. Sauer (Eds.), Soil Management: Building a Stable Base for Agriculture (pp. 245–263). Soil Science Society of America. https://doi.org/10.2136/2011.soilmanagement.c16 Larney, F. J., Pearson, D. C., Blackshaw, R., & Lupwayi, N. Z. (2017). Soil changes over 12 years of conventional vs. Conservation management on irrigated rotations in southern Alberta. Canadian Journal of Soil Science, CJSS-2016-0141. https://doi.org/10.1139/CJSS-2016-0141 Larney, F. J., Sullivan, D. M., Buckley, K. E., & Eghball, B. (2006). The role of composting in recycling manure nutrients. Canadian Journal of Soil Science, 86(4), 597–611. https://doi.org/10.4141/S05-116 Maillard, É., & Angers, D. A. (2014). Animal manure application and soil organic carbon stocks: A meta-analysis. Global Change Biology, 20(2), 666–679. https://doi.org/10.1111/gcb.12438 Miner, G. L., Delgado, J. A., Ippolito, J. A., Stewart, C. E., Manter, D. K., Del Grosso, S. J., Floyd, B. A., & D’Adamo, R. E. (2020). Assessing manure and inorganic nitrogen fertilization impacts on soil health, crop productivity, and crop quality in a continuous maize agroecosystem. Journal of Soil and Water Conservation, 75(4), 481–498. https://doi.org/10.2489/jswc.2020.00148 Ozlu, E., Sandhu, S. S., Kumar, S., & Arriaga, F. J. (2019). Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Scientific Reports, 9(1), 11776. https://doi.org/10.1038/s41598-019-48207-z Rayne, N., & Aula, L. (2020). Livestock Manure and the Impacts on Soil Health: A Review. Soil Systems, 4(4), 64. https://doi.org/10.3390/soilsystems4040064 Xia, L., Lam, S. K., Yan, X., & Chen, D. (2017). How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environmental Science & Technology, 51(13), 7450–7457. https://doi.org/10.1021/acs.est.6b06470 Zhong, W., Gu, T., Wang, W., Zhang, B., Lin, X., Huang, Q., & Shen, W. (2010). The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 326(1–2), 511–522. https://doi.org/10.1007/s11104-009-9988-y | |||
20 Jul 2022 | Should we be eating invasive species instead of beef? | 00:33:52 | |
Join Tim and Kim and Dr. Manuel Juarez of Agriculture and Agri-Food Canada as they discus eating invasive species such as wild boars instead of beef and the pros and cons of helicopter gunships for wild boar hunting. Citation Aschim, R. A., & Brook, R. K. (2019). Evaluating Cost-Effective Methods for Rapid and Repeatable National Scale Detection and Mapping of Invasive Species Spread. Scientific Reports, 9(1), 7254. https://doi.org/10.1038/s41598-019-43729-y Bulté, G., Robinson, S. A., Forbes, M. R., & Marcogliese, David. J. (2012). Is There Such Thing as a Parasite Free Lunch? The Direct and Indirect Consequences of Eating Invasive Prey. EcoHealth, 9(1), 6–16. https://doi.org/10.1007/s10393-012-0757-7 Croft, S., Franzetti, B., Gill, R., & Massei, G. (2020). Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLOS ONE, 15(9), e0238429. https://doi.org/10.1371/journal.pone.0238429 Curtis, P. D. (n.d.). After Decades of Suburban Deer Research and Management in the Eastern United States: Where Do We Go From Here? 18. Fiala, M., Marveggio, D., Viganò, R., Demartini, E., Nonini, L., & Gaviglio, A. (2020). LCA and wild animals: Results from wild deer culled in a northern Italy hunting district. Journal of Cleaner Production, 244, 118667. https://doi.org/10.1016/j.jclepro.2019.118667 Gagnier, M., Laurion, I., & DeNicola, A. J. (2020). Control and Surveillance Operations to Prevent Chronic Wasting Disease Establishment in Free-Ranging White-Tailed Deer in Québec, Canada. Animals, 10(2), 283. https://doi.org/10.3390/ani10020283 Gamborg, C., Sandøe, P., & Palmer, C. (2020). Ethical management of wildlife. Lethal versus nonlethal control of white‐tailed deer. Conservation Science and Practice, 2(4). https://doi.org/10.1111/csp2.171 Gaviglio, A., Marescotti, M., & Demartini, E. (2018). The Local Value Chain of Hunted Red Deer Meat: A Scenario Analysis Based on a Northern Italian Case Study. Resources, 7(2), 34. https://doi.org/10.3390/resources7020034 Johann, F., Handschuh, M., Linderoth, P., Dormann, C. F., & Arnold, J. (2020). Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecology, 20(1), 4. https://doi.org/10.1186/s12898-019-0271-7 Keuling, O., Baubet, E., Duscher, A., Ebert, C., Fischer, C., Monaco, A., Podgórski, T., Prevot, C., Ronnenberg, K., Sodeikat, G., Stier, N., & Thurfjell, H. (2013). Mortality rates of wild boar Sus scrofa L. in central Europe. European Journal of Wildlife Research, 59(6), 805–814. https://doi.org/10.1007/s10344-013-0733-8 Koons, D. N., Rockwell, R. F., & Aubry, L. M. (2014). Effects of exploitation on an overabundant species: The lesser snow goose predicament. Journal of Animal Ecology, 83(2), 365–374. https://doi.org/10.1111/1365-2656.12133 Meng, X. J., Lindsay, D. S., & Sriranganathan, N. (2009). Wild boars as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1530), 2697–2707. https://doi.org/10.1098/rstb.2009.0086 Niewiadomska, K., Kosicka-Gębska, M., Gębski, J., Gutkowska, K., Jeżewska-Zychowicz, M., & Sułek, M. (2020). Game Meat Consumption—Conscious Choice or Just a Game? Foods, 9(10), 1357. https://doi.org/10.3390/foods9101357 Nuñez, M. A., Kuebbing, S., Dimarco, R. D., & Simberloff, D. (2012). Invasive Species: To eat or not to eat, that is the question: Eating invasive species. Conservation Letters, 5(5), 334–341. https://doi.org/10.1111/j.1755-263X.2012.00250.x Risch, D. R., Ringma, J., & Price, M. R. (2021). The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity. Scientific Reports, 11(1), 13256. https://doi.org/10.1038/s41598-021-92691-1 Seaman, A. N. (n.d.). Eating invasives: Chefs as an avenue to control through consumption. 19. Silveira de Oliveira, Ê., Ludwig da Fontoura Rodrigues, M., Machado Severo, M., Gomes dos Santos, T., & Kasper, C. B. (2020). Who’s afraid of the big bad boar? Assessing the effect of wild boar presence on the occurrence and activity patterns of other mammals. PLOS ONE, 15(7), e0235312. https://doi.org/10.1371/journal.pone.0235312 | |||
16 Aug 2021 | How much do cattle contribute to climate change? | 00:29:00 | |
Citation Beauchemin, K. A., Ungerfeld, E. M., Eckard, R. J., & Wang, M. (2020). Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14, s2–s16. https://doi.org/10.1017/S1751731119003100 Eshel, G., & Martin, P. A. (2006). Diet, Energy, and Global Warming. Earth Interactions, 10(9), 1–17. https://doi.org/10.1175/EI167.1 Eshel, G., Shepon, A., Makov, T., & Milo, R. (2014). Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences, 111(33), 11996–12001. https://doi.org/10.1073/pnas.1402183111 Harwatt, H., Sabaté, J., Eshel, G., Soret, S., & Ripple, W. (2017). Substituting beans for beef as a contribution toward US climate change targets. Climatic Change, 143(1–2), 261–270. https://doi.org/10.1007/s10584-017-1969-1 Kim, B. F., Santo, R. E., Scatterday, A. P., Fry, J. P., Synk, C. M., Cebron, S. R., Mekonnen, M. M., Hoekstra, A. Y., de Pee, S., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Country-specific dietary shifts to mitigate climate and water crises. Global Environmental Change, 62, 101926. https://doi.org/10.1016/j.gloenvcha.2019.05.010 Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992. https://doi.org/10.1126/science.aaq0216 Rapier, R. (n.d.). Estimating The Carbon Footprint Of Hydrogen Production. 6. Rapier, R. (n.d.). Hydrogen Production With A Low Carbon Footprint. 5. Roque, B. M., Venegas, M., Kinley, R. D., de Nys, R., Duarte, T. L., Yang, X., & Kebreab, E. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLOS ONE, 16(3), e0247820. https://doi.org/10.1371/journal.pone.0247820 Teague, W. R., Apfelbaum, S., Lal, R., Kreuter, U. P., Rowntree, J., Davies, C. A., Conser, R., Rasmussen, M., Hatfield, J., Wang, T., Wang, F., & Byck, P. (2016). The role of ruminants in reducing agriculture’s carbon footprint in North America. Journal of Soil and Water Conservation, 71(2), 156–164. https://doi.org/10.2489/jswc.71.2.156 Valente, A., Iribarren, D., & Dufour, J. (2020). Prospective carbon footprint comparison of hydrogen options. Science of The Total Environment, 728, 138212. https://doi.org/10.1016/j.scitotenv.2020.138212 | |||
27 Jan 2022 | Can grazing cattle and fish happily co-exist? | 00:31:39 | |
Citations Agouridis, C. T., Workman, S. R., Warner, R. C., & Jennings, G. D. (2005). LIVESTOCK GRAZING MANAGEMENT IMPACTS ON STREAM WATER QUALITY: A REVIEW. Journal of the American Water Resources Association, 41(3), 591–606. https://doi.org/10.1111/j.1752-1688.2005.tb03757.x Batchelor, J. L., Ripple, W. J., Wilson, T. M., & Painter, L. E. (2015). Restoration of Riparian Areas Following the Removal of Cattle in the Northwestern Great Basin. Environmental Management, 55(4), 930–942. https://doi.org/10.1007/s00267-014-0436-2 Gary, H. L., Johnson, S. R., & Ponce, S. L. (n.d.). Cattle grazing impact on surface water quality in a Colorado Front Range stream. 5. Hubbard, R. K., Newton, G. L., & Hill, G. M. (n.d.). Water quality and the grazing animal. 9. Parsons, C. T., Momont, P. A., & Delcurto, T. (2003). Cattle distribution patterns and vegetation use in mountain riparian areas. JOURNAL OF RANGE MANAGEMENT, 8. Powell, G. W., Cameron, K. J., & Newman, R. F. (n.d.). Analysis of Livestock Use of Riparian Areas. 46. Roche, L. M., Kromschroeder, L., Atwill, E. R., Dahlgren, R. A., & Tate, K. W. (2013). Water Quality Conditions Associated with Cattle Grazing and Recreation on National Forest Lands. PLoS ONE, 8(6), e68127. https://doi.org/10.1371/journal.pone.0068127 Willms, W. D., Kenzie, O. R., Mcallister, T. A., Colwell, D., Veira, D., Entz, T., & Olson, M. E. (2002). Effects of water quality on cattle performance. JOURNAL OF RANGE MANAGEMENT, 9.
| |||
27 Nov 2021 | Should meat be grown in a lab? | 00:34:59 | |
Join Dr. Andrew Pelling as he describes some of the challenges his lab is facing developing lab-grown meat.
| |||
24 Jun 2022 | Meat substitutes vs beef | 00:31:08 | |
Citations Curtain, F., & Grafenauer, S. (2019). Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients, 11(11), 2603. https://doi.org/10.3390/nu11112603 Davitt, E. D., Winham, D. M., Heer, M. M., Shelley, M. C., & Knoblauch, S. T. (2021). Predictors of Plant-Based Alternatives to Meat Consumption in Midwest University Students. Journal of Nutrition Education and Behavior, 53(7), 564–572. https://doi.org/10.1016/j.jneb.2021.04.459 He, J., Evans, N. M., Liu, H., & Shao, S. (2020). A review of research on plant‐based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2639–2656. https://doi.org/10.1111/1541-4337.12610 Lynch, H., Johnston, C., & Wharton, C. (2018). Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients, 10(12), 1841. https://doi.org/10.3390/nu10121841 Michel, F., Hartmann, C., & Siegrist, M. (2021). Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Quality and Preference, 87, 104063. https://doi.org/10.1016/j.foodqual.2020.104063 Santo, R. E., Kim, B. F., Goldman, S. E., Dutkiewicz, J., Biehl, E. M. B., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Considering Plant-Based Meat Substitutes and Cell-Based Meats: A Public Health and Food Systems Perspective. Frontiers in Sustainable Food Systems, 4, 134. https://doi.org/10.3389/fsufs.2020.00134 van Vliet, S., Kronberg, S. L., & Provenza, F. D. (2020). Plant-Based Meats, Human Health, and Climate Change. Frontiers in Sustainable Food Systems, 4, 128. https://doi.org/10.3389/fsufs.2020.00128
| |||
08 Dec 2022 | Cows in India | 00:27:44 | |
Bibliography Gupta, J. J., Singh, K. M., Bhatt, B. P., & Dey, A. (n.d.). A diagnostic study on livestock production system in Eastern Region of India. 7. Khan, A. A., & Bidabadi, F. S. (2004). Livestock Revolution in India: Its Impact and Policy Response. South Asia Research, 24(2), 99–122. https://doi.org/10.1177/0262728004047907 Kumar, A., & Singh, D. K. (n.d.). Livestock Production Systems in India: An Appraisal Across Agro-Ecological Regions. 22. Thornton, P., Nelson, G., Mayberry, D., & Herrero, M. (2022). Impacts of heat stress on global cattle production during the 21st century: A modelling study. The Lancet Planetary Health, 6(3), e192–e201. https://doi.org/10.1016/S2542-5196(22)00002-X
| |||
01 Feb 2023 | Too many cows and excess nitrogen? | 00:28:37 | |
References Bai, Zhaohai, Xiangwen Fan, Xinpeng Jin, Zhanqing Zhao, Yan Wu, Oene Oenema, Gerard Velthof, Chunsheng Hu, and Lin Ma. “Relocate 10 Billion Livestock to Reduce Harmful Nitrogen Pollution Exposure for 90% of China’s Population.” Nature Food 3, no. 2 (February 10, 2022): 152–60. https://doi.org/10.1038/s43016-021-00453-z. Rütting, T., H. Aronsson, and S. Delin. “Efficient Use of Nitrogen in Agriculture.” Nutrient Cycling in Agroecosystems 110, no. 1 (January 2018): 1–5. https://doi.org/10.1007/s10705-017-9900-8. Samanta, Prantik, Harald Horn, and Florencia Saravia. “Impact of Livestock Farming on Nitrogen Pollution and the Corresponding Energy Demand for Zero Liquid Discharge.” Water 14, no. 8 (April 15, 2022): 1278. https://doi.org/10.3390/w14081278. Skeffington, R.A., and Emma J. Wilson. “Excess Nitrogen Deposition: Issues for Consideration.” Environmental Pollution 54, no. 3–4 (1988): 159–84. https://doi.org/10.1016/0269-7491(88)90110-8. Sun, Bo, Linxiu Zhang, Linzhang Yang, Fusuo Zhang, David Norse, and Zhaoliang Zhu. “Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures.” AMBIO 41, no. 4 (June 2012): 370–79. https://doi.org/10.1007/s13280-012-0249-6. | |||
06 Apr 2022 | Season 1 Review | 00:29:43 | |
Citation Can be found in the episode notes of the past 17 episodes at Cows on the Planet (simplecast.com).
| |||
07 Oct 2022 | Grass-fed Beef | 00:31:09 | |
Join Tim and Kim as they talk with Dr. Sarah Klopatek of UC Davis and learn all the chewy bits of her recent comprehensive study on grass-fed beef economics, meat quality, and environmental impacts. Bibliography Davis, H., Magistrali, A., Butler, G., & Stergiadis, S. (2022). Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods, 11(5), 646. https://doi.org/10.3390/foods11050646 Geiker, N. R. W., Bertram, H. C., Mejborn, H., Dragsted, L. O., Kristensen, L., Carrascal, J. R., Bügel, S., & Astrup, A. (2021). Meat and Human Health—Current Knowledge and Research Gaps. Foods, 10(7), 1556. https://doi.org/10.3390/foods10071556 Klopatek, S. C., Marvinney, E., Duarte, T., Kendall, A., Yang, X. (Crystal), & Oltjen, J. W. (2022a). Grass-fed vs. grain-fed beef systems: Performance, economic, and environmental trade-offs. Journal of Animal Science, 100(2), skab374. https://doi.org/10.1093/jas/skab374 Klopatek, S. C., Marvinney, E., Duarte, T., Kendall, A., Yang, X. (Crystal), & Oltjen, J. W. (2022b). Grass-fed vs. grain-fed beef systems: Performance, economic, and environmental trade-offs. Journal of Animal Science, 100(2), skab374. https://doi.org/10.1093/jas/skab374 Klopatek, S. C., & Oltjen, J. W. (2022). How advances in animal efficiency and management have affected beef cattle’s water intensity in the United States: 1991 compared to 2019. Journal of Animal Science, skac297. https://doi.org/10.1093/jas/skac297 Provenza, F. D., Kronberg, S. L., & Gregorini, P. (2019). Is Grassfed Meat and Dairy Better for Human and Environmental Health? Frontiers in Nutrition, 6, 26. https://doi.org/10.3389/fnut.2019.00026 Tichenor, N. E., Peters, C. J., Norris, G. A., Thoma, G., & Griffin, T. S. (2017). Life cycle environmental consequences of grass-fed and dairy beef production systems in the Northeastern United States. Journal of Cleaner Production, 142, 1619–1628. https://doi.org/10.1016/j.jclepro.2016.11.138 Turner, T. D., Jensen, J., Pilfold, J. L., Prema, D., Donkor, K. K., Cinel, B., Thompson, D. J., Dugan, M. E. R., & Church, J. S. (2015). Comparison of fatty acids in beef tissues from conventional, organic and natural feeding systems in western Canada. Canadian Journal of Animal Science, 95(1), 49–58. https://doi.org/10.4141/cjas-2014-113 | |||
07 Mar 2023 | Kiwi cows and the BURP tax | 00:32:38 | |
Join Tim and Kim as they visit with Mark Aspin, Manager of the Pastoral Greenhouse Gas Consortium in New Zealand. Much discussion of burps, farts and levies for ruminant-produced greenhouse gasses ensues. References Buddle, Bryce M., Michel Denis, Graeme T. Attwood, Eric Altermann, Peter H. Janssen, Ron S. Ronimus, Cesar S. Pinares-Patiño, Stefan Muetzel, and D. Neil Wedlock. “Strategies to Reduce Methane Emissions from Farmed Ruminants Grazing on Pasture.” The Veterinary Journal 188, no. 1 (April 2011): 11–17. https://doi.org/10.1016/j.tvjl.2010.02.019. Animals. “Can You Tax a Cow’s Burps? New Zealand Will Be the First to Try.,” November 17, 2022. https://www.nationalgeographic.com/animals/article/can-you-tax-a-cows-burps-new-zealand-will-be-the-first-to-try. Corlett, Eva. “Nineteen Years after the ‘Fart Tax’, New Zealand’s Farmers Are Fighting Emissions.” The Guardian, November 12, 2022, sec. World news. https://www.theguardian.com/world/2022/nov/12/19-years-after-the-fart-tax-new-zealands-farmers-are-fighting-emissions. González-Recio, O., J. López-Paredes, L. Ouatahar, N. Charfeddine, E. Ugarte, R. Alenda, and J.A. Jiménez-Montero. “Mitigation of Greenhouse Gases in Dairy Cattle via Genetic Selection: 2. Incorporating Methane Emissions into the Breeding Goal.” Journal of Dairy Science 103, no. 8 (August 2020): 7210–21. https://doi.org/10.3168/jds.2019-17598. Hayek, Matthew N, and Scot M Miller. “Underestimates of Methane from Intensively Raised Animals Could Undermine Goals of Sustainable Development.” Environmental Research Letters 16, no. 6 (June 1, 2021): 063006. https://doi.org/10.1088/1748-9326/ac02ef. Hickey, Sharon M., Wendy E. Bain, Timothy P. Bilton, Gordon J. Greer, Sara Elmes, Brooke Bryson, Cesar S. Pinares-Patiño, et al. “Impact of Breeding for Reduced Methane Emissions in New Zealand Sheep on Maternal and Health Traits.” Frontiers in Genetics 13 (September 30, 2022): 910413. https://doi.org/10.3389/fgene.2022.910413. McGregor, Andrew, Lauren Rickards, Donna Houston, Michael K. Goodman, and Milena Bojovic. “The Biopolitics of Cattle Methane Emissions Reduction: Governing Life in a Time of Climate Change.” Antipode 53, no. 4 (July 2021): 1161–85. https://doi.org/10.1111/anti.12714. Press ·, The Associated. “New Zealand’s Plan to Tax Cow Burps Condemned by Farmers | CBC News.” CBC, October 11, 2022. https://www.cbc.ca/news/world/new-zealand-proposes-taxing-cow-burps-1.6612302. Smith, Ian. “Farmers Protest against New Zealand’s Proposed ‘Cow Burp Tax.’” euronews, October 20, 2022. https://www.euronews.com/green/2022/10/20/cow-burps-to-be-taxed-under-world-first-proposals-by-new-zealand. | |||
12 Jul 2021 | Are feedlots cruel to cattle? | 00:37:44 | |
Beef welfare scientist Dr. Karen Schwartzkopf Genswein discusses changes in the beef industry during her 25 year career.
| |||
22 Jul 2021 | Fat is where it’s at! | 00:20:08 | |
Join Dr. Mike Dugan as he explores healthy fat such as omega 3s and also unhealthy fats such as trans-fats, and the relationship between saturated fats and heart disease.
| |||
09 Mar 2022 | Are cattle using too much land? | 00:32:12 | |
Citations Clark, M., & Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12(6), 064016. https://doi.org/10.1088/1748-9326/aa6cd5 Garrido, P., Edenius, L., Mikusiński, G., Skarin, A., Jansson, A., & Thulin, C.-G. (2021). Experimental rewilding may restore abandoned wood-pastures if policy allows. Ambio, 50(1), 101–112. https://doi.org/10.1007/s13280-020-01320-0 Smit, C., Ruifrok, J. L., van Klink, R., & Olff, H. (2015). Rewilding with large herbivores: The importance of grazing refuges for sapling establishment and wood-pasture formation. Biological Conservation, 182, 134–142. https://doi.org/10.1016/j.biocon.2014.11.047 Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515(7528), 518–522. https://doi.org/10.1038/nature13959 van Zanten, H. H. E., Meerburg, B. G., Bikker, P., Herrero, M., & de Boer, I. J. M. (2016). Opinion paper: The role of livestock in a sustainable diet: a land-use perspective. Animal, 10(4), 547–549. https://doi.org/10.1017/S1751731115002694 Wirsenius, S., Azar, C., & Berndes, G. (2010). How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems, 103(9), 621–638. https://doi.org/10.1016/j.agsy.2010.07.005
| |||
27 Apr 2022 | Cows in Ghana | 00:36:06 | |
Citation Adams, F., Ohene-Yankyera, K., Aidoo, R., & Wongnaa, C. A. (2021). Economic benefits of livestock management in Ghana. Agricultural and Food Economics, 9(1), 17. https://doi.org/10.1186/s40100-021-00191-7 Addah, W. (2010). Impact of ethnic conflicts on cattle population and production in the eastern corridor of the northern region of Ghana. International Journal of Tropical Agriculture and Food Systems, 3(1). https://doi.org/10.4314/ijotafs.v3i1.50015 Balehegn, M., Kebreab, E., Tolera, A., Hunt, S., Erickson, P., Crane, T. A., & Adesogan, A. T. (2021). Livestock sustainability research in Africa with a focus on the environment. Animal Frontiers, 11(4), 47–56. https://doi.org/10.1093/af/vfab034 Chebo, C., & Alemayehu, K. (n.d.). Trends of cattle genetic improvement programs in Ethiopia: Challenges and opportunities. 17. Ilemobade, A. A. (n.d.). Tsetse and trypanosomosis in Africa: The challenges, the opportunities. 6. Nyantakyi-Frimpong, H., Colecraft, E. K., Awuah, R. B., Adjorlolo, L. K., Wilson, M. L., & Jones, A. D. (2018). Leveraging smallholder livestock production to reduce anemia: A qualitative study of three agroecological zones in Ghana. Social Science & Medicine, 212, 191–202. https://doi.org/10.1016/j.socscimed.2018.07.028 Otte, J., Pica-Ciamarra, U., & Morzaria, S. (2019). A Comparative Overview of the Livestock-Environment Interactions in Asia and Sub-saharan Africa. Frontiers in Veterinary Science, 6, 37. https://doi.org/10.3389/fvets.2019.00037 University of Ghana, Obese, F., Acheampong, D., Darfour-Oduro, K., & Animal Research Institute, Ghana. (2013). Growth and reproductive traits of friesian X sanga crossbred cattle in the Accra plains of Ghana. African Journal of Food, Agriculture, Nutrition and Development, 13(57), 7357–7371. https://doi.org/10.18697/ajfand.57.11440 The role of livestock in food security, poverty reduction and wealth creation in West Africa. (2020). FAO. https://doi.org/10.4060/ca8385en EVALUATION OF EXISTING AND POTENTIAL FEED RESOURCES FOR RUMINANT PRODUCTION IN NORTHERN GHANA. (n.d.). 36.
| |||
20 Sep 2022 | Negativity to agriculture in the media | 00:31:37 | |
Join Tim and Kim as they discuss the sometimes negative view of agriculture in the media with Ben Wilson and Sarah Wray of Storybrokers Media House. Bibliography John, D. A., & Babu, G. R. (2021). Lessons From the Aftermaths of Green Revolution on Food System and Health. Frontiers in Sustainable Food Systems, 5, 644559. https://doi.org/10.3389/fsufs.2021.644559 Lundy, L. K., Ruth, A. M., & Park, T. D. (2007). Entertainment and Agriculture: An Examination of the Impact of Entertainment Media on Perceptions of Agriculture. Journal of Applied Communications, 91(1). https://doi.org/10.4148/1051-0834.1257 Tilman, D. (1999). Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proceedings of the National Academy of Sciences, 96(11), 5995–6000. https://doi.org/10.1073/pnas.96.11.5995 Wachenheim, C., & Rathge, R. (n.d.). Societal Perceptions of Agriculture. 41. Widiyanti, E., Setyowati, N., & Ardianto, D. T. (2018). Young generation’s perception on the agricultural sector. IOP Conference Series: Earth and Environmental Science, 200, 012060. https://doi.org/10.1088/1755-1315/200/1/012060 | |||
29 Oct 2021 | How easy is it for a vegan to meet their nutrient requirements? | 00:30:01 | |
Join Dr. Benjamin Bohrer of Ohio State University as he discusses some of the challenges and easier aspects to meeting nutrient requirements on a vegan diet. Dr. Benjamin Bohrer can be reached on Twitter @b3nbohrer for further discussion!
| |||
17 Aug 2022 | Are there harmful residues in beef? | 00:30:30 | |
Join Tim and Kim as they talk about all your favorite potential residues in beef, from hormones and antibiotics to genetically-modified crops, with Dr. Joe Schwarcz, Director of the Office for Science and Society at McGill University. Citation Doyle, E. (2000). Human Safety of Hormone Implants Used to Promote Growth in Cattle. 24. Hirpessa, B., Ulusoy, B., Hecer, C. (2020). Hormones and Hormonal Anabolics: Residues in Animal Source Food, Potential Public Health Impacts, and Methods of Analysis. Retrieved August 9, 2022, from https://www.hindawi.com/journals/jfq/2020/5065386/ Jeong, S.-H., Kang, D.-J., Lim, M.-W., Kang, C.-S., & Sung, H.-J. (2010). Risk Assessment of Growth Hormones and Antimicrobial Residues in Meat. Toxicological Research, 26(4), 301–313. https://doi.org/10.5487/TR.2010.26.4.301 Kumar, S. (2018). Adverse effects on consumer’s health caused by hormones administered in cattle. 10. Ramatla, T., Ngoma, L., Adetunji, M., & Mwanza, M. (2017). Evaluation of Antibiotic Residues in Raw Meat Using Different Analytical Methods. Antibiotics, 6(4), 34. https://doi.org/10.3390/antibiotics6040034 Smith, Z. K., & Johnson, B. J. (2020). Mechanisms of steroidal implants to improve beef cattle growth: A review. Journal of Applied Animal Research, 48(1), 133–141. https://doi.org/10.1080/09712119.2020.1751642 Thieme, D., & Hemmersbach, P. (Eds.). (2010). Doping in Sports (Vol. 195). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79088-4 | |||
03 Aug 2022 | Cows that Kill | 00:25:09 | |
Join Tim and Kim as they discuss situations most likely to lead to injury or death by bovine with Dr. Karen Schwartzkopf-Genswein in a shameless ploy to tap into the true crime podcast fanbase. Citations Black, R., & Krawczel, P. (2016). A Case Study of Behaviour and Performance of Confined or Pastured Cows During the Dry Period. Animals, 6(7), 41. https://doi.org/10.3390/ani6070041 Eusebi, P. G., Sevane, N., O’Rourke, T., Pizarro, M., Boeckx, C., & Dunner, S. (2022). Age Effects Aggressive Behavior: RNA-Seq Analysis in Cattle with Implications for Studying Neoteny Under Domestication. Behavior Genetics, 52(2), 141–153. https://doi.org/10.1007/s10519-021-10097-1 No need to tolerate aggressive cows. (2011). Retrieved July 27, 2022, from https://www.canadiancattlemen.ca/features/why-do-we-tolerate-aggressive-cows/ Westgarth, C., & McIntyre, M. (2017). When cows attack: How dangerous are cattle and how can you stay safe around them? The Conversation. Retrieved July 27, 2022, from http://theconversation.com/when-cows-attack-how-dangerous-are-cattle-and-how-can-you-stay-safe-around-them-79524 Why and how to read a cow or bull. (2004). Retrieved July 27, 2022, from https://nature.berkeley.edu/ucce50/ag-labor/7article/article29.htm | |||
31 Oct 2022 | Can we eat our way out of climate change? | 00:31:32 | |
Join Tim and Kim as they talk with Dr. Frank Mitloehner of UC Davis about how dietary choices affect green house gasses, teaching children to cook, and the need for better-looking scientists among other things. Bibliography Almiron, N., & Zoppeddu, M. (2015). Eating Meat and Climate Change: The Media Blind Spot—A Study of Spanish and Italian Press Coverage. Environmental Communication, 9(3), 307–325. https://doi.org/10.1080/17524032.2014.953968 Amundson, R. (2022). Negative emissions in agriculture are improbable in the near future. Proceedings of the National Academy of Sciences, 119(12), e2118142119. https://doi.org/10.1073/pnas.2118142119 González, N., Marquès, M., Nadal, M., & Domingo, J. L. (2020). Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Research International, 137, 109341. https://doi.org/10.1016/j.foodres.2020.109341 Pitesky, M. E., Stackhouse, K. R., & Mitloehner, F. M. (2009). Clearing the Air. In Advances in Agronomy (Vol. 103, pp. 1–40). Elsevier. https://doi.org/10.1016/S0065-2113(09)03001-6 Raiten, D. J., Allen, L. H., Slavin, J. L., Mitloehner, F. M., Thoma, G. J., Haggerty, P. A., & Finley, J. W. (2020). Understanding the Intersection of Climate/Environmental Change, Health, Agriculture, and Improved Nutrition: A Case Study on Micronutrient Nutrition and Animal Source Foods. Current Developments in Nutrition, 4(7), nzaa087. https://doi.org/10.1093/cdn/nzaa087 | |||
10 Aug 2021 | Cows on the Planet Trailer | 00:02:50 | |
Welcome to the Cows on the Planet Podcast for more info we can be found on the following links. Like and follow for more!
Website: https://cows-on-the-planet.simplecast.com/
Spotify: https://open.spotify.com/show/1DtO7WI5txqNPlFW0osUkD?si=GNRS44nVRcm1yZ7V9wthDg&dl_branch=1&nd=1
Apple podcast: https://podcasts.apple.com/us/podcast/cows-on-the-planet/id1576254068
Amazon Music: https://music.amazon.ca/podcasts/004953a4-b379-487a-8b25-86ba9107c56e/cows-on-the-planet
Facebook: https://www.facebook.com/Cows.on.the.Planet
Instagram: https://www.instagram.com/cows.on.the.planet/
Twitter: https://twitter.com/planet_cows
| |||
12 Oct 2021 | Should cattle be replaced with native species such as bison?” | 00:31:47 | |
Citations Galbraith, J., Rodas-González, A., López-Campos, Ó., Juárez, M., & Aalhus, J. (2014). Bison meat: Characteristics, challenges, and opportunities. Animal Frontiers, 4(4), 68–73. https://doi.org/10.2527/af.2014-0036 Kohl, M. T., Krausman, P. R., Kunkel, K., & Williams, D. M. (2013). Bison Versus Cattle: Are They Ecologically Synonymous? Rangeland Ecology & Management, 66(6), 721–731. https://doi.org/10.2111/REM-D-12-00113.1 Ranglack, D. H., Durham, S., & Toit, J. T. (2015). EDITOR’S CHOICE: Competition on the range: science vs. perception in a bison–cattle conflict in the western USA. Journal of Applied Ecology, 52(2), 467–474. https://doi.org/10.1111/1365-2664.12386 Steuter, A., & Hidinger, L. (1999). Comparative Ecology of Bison and Cattle on Mixed-Grass Prairie. 9, 15. Stoy, P. C., Cook, A. A., Dore, J. E., Kljun, N., Kleindl, W., Brookshire, E. N. J., & Gerken, T. (2021). Methane efflux from an American bison herd. Biogeosciences, 18(3), 961–975. https://doi.org/10.5194/bg-18-961-2021 | |||
11 May 2022 | How much do cows contribute to Amazon deforestation? | 00:36:45 | |
Literature Cited Kaimowitz, D., Mertens, B., Wunder, S., & Pacheco, P. (n.d.). Cattle ranching and deforestation in Brazil’s Amazon. 10. Rajão, R., & Georgiadou, Y. (2014). Blame Games in the Amazon: Environmental Crises and the Emergence of a Transparency Regime in Brazil. Global Environmental Politics, 14(4), 97–115. https://doi.org/10.1162/GLEP_a_00259 Rajão, R., Soares-Filho, B., Nunes, F., Börner, J., Machado, L., Assis, D., Oliveira, A., Pinto, L., Ribeiro, V., Rausch, L., Gibbs, H., & Figueira, D. (2020). The rotten apples of Brazil’s agribusiness. Science, 369(6501), 246–248. https://doi.org/10.1126/science.aba6646 Rajão, R., & Vurdubakis, T. (2013). On the Pragmatics of Inscription: Detecting Deforestation in the Brazilian Amazon. Theory, Culture & Society, 30(4), 151–177. https://doi.org/10.1177/0263276413486203 Shukla, J., Nobre, C., & Sellers, P. (1990). Amazon Deforestation and Climate Change. Science, 247(4948), 1322–1325. https://doi.org/10.1126/science.247.4948.1322 Silva Junior, C. H. L., Pessôa, A. C. M., Carvalho, N. S., Reis, J. B. C., Anderson, L. O., & Aragão, L. E. O. C. (2021). The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology & Evolution, 5(2), 144–145. https://doi.org/10.1038/s41559-020-01368-x Skidmore, M. E., Moffette, F., Rausch, L., Christie, M., Munger, J., & Gibbs, H. K. (2021). Cattle ranchers and deforestation in the Brazilian Amazon: Production, location, and policies. Global Environmental Change, 68, 102280. https://doi.org/10.1016/j.gloenvcha.2021.102280 Soares-Filho, B., Rajão, R., Macedo, M., Carneiro, A., Costa, W., Coe, M., Rodrigues, H., & Alencar, A. (2014). Cracking Brazil’s Forest Code. Science, 344(6182), 363–364. https://doi.org/10.1126/science.1246663 Walker, N. F., Patel, S. A., & Kalif, K. A. B. (2013). From Amazon Pasture to the High Street: Deforestation and the Brazilian Cattle Product Supply Chain. Tropical Conservation Science, 6(3), 446–467. https://doi.org/10.1177/194008291300600309 Walker, R., Moran, E., & Anselin, L. (2000). Deforestation and Cattle Ranching in the Brazilian Amazon: External Capital and Household Processes. World Development, 28(4), 683–699. https://doi.org/10.1016/S0305-750X(99)00149-7 | |||
03 Aug 2021 | Are grazing cows harming ecosystems? | 00:32:23 | |
Citation Alkemade, R., Reid, R. S., van den Berg, M., de Leeuw, J., & Jeuken, M. (2013). Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. Proceedings of the National Academy of Sciences, 110(52), 20900–20905. https://doi.org/10.1073/pnas.1011013108 Carlyle, C. N. (n.d.). THE BENEFITS OF CATTLE FOR CARBON STORAGE AND BIODIVERSITY IN THE CANADIAN PRAIRIE. 23. Editorial: Cattle and Conservation Biology—Another View. (2021). 4. Pogue, S. J., Kröbel, R., Janzen, H. H., Alemu, A. W., Beauchemin, K. A., Little, S., Iravani, M., de Souza, D. M., & McAllister, T. A. (2020). A social-ecological systems approach for the assessment of ecosystem services from beef production in the Canadian prairie. Ecosystem Services, 45, 101172. https://doi.org/10.1016/j.ecoser.2020.101172 | |||
31 Mar 2023 | Cows of the Future | 00:30:09 | |
Join Tim and Kim and Dr. Francis Fluharty of the University of Georgia as they talk about changes in cattle over the past 60 years, whether these changes can be sustained in the future, and the desirability of selecting for cows that are excellent swimmers for future floods. References Herrero, M., & Thornton, P. K. (2013). Livestock and global change: Emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences, 110(52), 20878–20881. https://doi.org/10.1073/pnas.1321844111 Lamm, K. W., Randall, N. L., & Fluharty, F. L. (2021). Critical issues facing the animal and food industry: A Delphi analysis. Translational Animal Science, 5(1), txaa213. https://doi.org/10.1093/tas/txaa213 Nicol, C. J. (2021). A Grand Challenge for Animal Science: Multiple Goals – Convergent and Divergent. Frontiers in Animal Science, 2, 640503. https://doi.org/10.3389/fanim.2021.640503 Nielsen, M. S. W., & Bergfeld, E. (2003). Critical perspectives in animal agriculture: A response. Journal of Animal Science, 81(11), 2908–2911. https://doi.org/10.2527/2003.81112908x Rioja-Lang, F. C., Connor, M., Bacon, H. J., Lawrence, A. B., & Dwyer, C. M. (2020). Prioritization of Farm Animal Welfare Issues Using Expert Consensus. Frontiers in Veterinary Science, 6, 495. https://doi.org/10.3389/fvets.2019.00495 Schillo, K. K. (2003). Critical perspectives of animal agriculture: Introduction1,2. Journal of Animal Science, 81(11), 2880–2886. https://doi.org/10.2527/2003.81112880x |