10 Feb 2022 搞乜咁科學 #0 - 序幕 Trailer 🎬 00:01:22 歡迎嚟到 搞乜咁科學 GMG Science ! 呢個係由一個數學老師 、同埋一個生物醫學博士傾下計,順便探討一下有趣科學知識嘅podcast!
每集我哋會就住一個主題,傾吓相關嘅數學故事同埋科學知識! 大家可以係你哋聽podcast嘅地方 或者 youtube search 搞乜咁科學 gmgscience, 或者follow我哋IG: @gmgscience 搞乜咁科學。
歡迎大家喺嚟緊嘅每集一齊 join我哋呢個飯局,一齊輕輕鬆鬆,聽下故仔,一齊畀科學同數學喚醒大家沉睡於深處嘅好奇心。
我地下集 搞乜咁科學 再見~
01 Mar 2022 搞乜咁科學 #1 - 顏色 Colour 🎨 00:23:34 歡迎嚟到 搞乜咁科學 GMG Science!
今集嘅主題係顏色!Keith會講一個同油顏色有關嘅數學定理,Abellona會解釋點解講唔同語言嘅人睇到嘅顏色有機會係唔同嘅。
Social Media: 搞乜咁科學 Instagram: www.instagram.com/gmgscience Abellona Instagram: www.instagram.com/_doctor_u Keith Instagram: http://www.instagram.com/keith.poonsir YouTube: https://www.youtube.com/channel/UC9fh5paH2jh5kfBVDEPC1YA
Show Notes and Links: 大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience Keith's Part四色定理 - Wikipedia 全盒圖片 甘比鍊 Kempe Chain - Wikipedia 香港十八區地圖 - 香港地方大典 數學證明軟件 - Wikipedia Abellona's Part 普世觀 Universalist view – 語言發展顏色詞彙的順序The surprising pattern behind color names around the world - Vox 世界顏色調查 World Colour Survey 相對觀 Relativist view俄文冇「藍色」?! Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the national academy of sciences , 104 (19), 7780-7785. 環境需要定斷顏色詞彙嘅發展? 暖色詞彙多過冷色? Analyzing the language of color - MIT News
01 Apr 2022 搞乜咁科學 #2 - 溫度 Temperature🌡 00:27:00 06 May 2022 搞乜咁科學 #3 - 規律 Pattern🐆 00:44:00 歡迎嚟到 搞乜咁科學 GMG Science 第3集!
今集嘅主題係規律Pattern!Keith會講一個同國家人口、原子重量同金融 詐騙都有關嘅數字規律,Abellona會解釋究竟豹嘅斑點係點樣黎嘅呢?
喂!好奇心,係時候醒喇 :)
Social Media:
搞乜咁科學 IG
搞乜咁科學 YouTube
Abellona IG
Keith IG
Keith YouTube 班佛定律 Benford’s Law Benford's Law Wikipedia
Newcomb, S. (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of mathematics , 4 (1), 39-40.
Benford, F. (1938). The law of anomalous numbers. Proceedings of the American philosophical society , 551-572.
用Benford’s Law發現會計數據有問題?!Durtschi, C., Hillison, W., & Pacini, C. (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of forensic accounting , 5 (1), 17-34.
選舉票數有問題都一樣check到!Roukema, Boudewijn F. (2014). "A first-digit anomaly in the 2009 Iranian presidential election". Journal of Applied Statistics
拜登選票唔乎合 Benford’s Law? - Stand-up Maths on YouTube 豹嘅斑點係點黎?!
Turing pattern 圖靈規律 Wikipedia
TURING, A. (1952). THE CHEMICAL BASIS OF MOKPHOGENESIS. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences , 237 (641), 37-72.
用電腦模擬運算圖靈model而產生規律的例子
Headon, D. J., & Painter, K. J. (2009). Stippling the skin: Generation of anatomical periodicity by reaction-diffusion mechanisms. Mathematical Modelling of Natural Phenomena , 4 (4), 83-102.
用圖靈Model 可以解釋到生物界嘅其他規律嘅生成
Kondo, S., & Miura, T. (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science , 329 (5999), 1616-1620.
Marcon, L., & Sharpe, J. (2012). Turing patterns in development: what about the horse part? Current opinion in genetics & development , 22 (6), 578-584.
用生物模擬(口內的上顎)實踐到圖靈規律出黎
Economou, A. D., Ohazama, A., Porntaveetus, T., Sharpe, P. T., Kondo, S., Basson, M. A., ... & Green, J. (2012). Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nature genetics , 44 (3), 348-351.
定斷貓有幾多白色的基因
David, V. A., Menotti-Raymond, M., Wallace, A. C., Roelke, M., Kehler, J., Leighty, R., ... & Ryugo, D. K. (2014). Endogenous retrovirus insertion in the KIT oncogene determines white and white spotting in domestic cats. G3: Genes, Genomes, Genetics , 4 (10), 1881-1891.
03 Jun 2022 搞乜咁科學 #4 - 蟲蟲 Bugs🐞 00:38:30 01 Jul 2022 搞乜咁科學 #5 - 多餘 Extra ➕ 00:52:28 05 Aug 2022 搞乜咁科學 #6 - 對戰 Battle ⚔️ 00:57:03 02 Sep 2022 搞乜咁科學 #7 - 錯處 Mistake❌ 00:58:45 07 Oct 2022 搞乜咁科學 #8 - 腦袋 Brain 🧠 01:07:55 04 Nov 2022 搞乜咁科學 #9 - 係愛啊 Love 💖 00:57:03 02 Dec 2022 搞乜咁科學 #10 - 驚喜Surprise🙀 01:16:03 歡迎嚟到 搞乜咁科學 GMG Science !
今集嘅主題係驚喜Surprise🙀!我哋會分享吓一D令我哋覺得好驚訝嘅科學發現。
聽完你可能會搵路叻咗🧭,同埋學識咗點樣經營一間好特別嘅酒店🏨
喂!好奇心,係時候醒喇 :)
Social Media:
科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7
搞乜咁科學網頁: www.gmgscience.com
搞乜咁科學 IG: www.instagram.com/gmgscience
搞乜咁科學 YouTube: https://www.youtube.com/channel/UCFj2cwjDASS2SyYsj3pkNSQ
Abellona IG: www.instagram.com/_doctor_u
Keith IG: www.instagram.com/keith.poonsir
Keith YouTube:
https://youtube.com/c/KeithPoonSir
Show Notes and Links:
大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience
Abellona’s Section
君主斑蝶 - Wikipedia
君主斑蝶的遷徙 - Wikipedia
君主斑蝶在中墨西哥過冬的景況 - Youtube
Reppert, S. M., Guerra, P. A., & Merlin, C. (2016). Neurobiology of monarch butterfly migration. Annual review of entomology , 61 .
動物如何依靠星空搵路 - 訪問早期研究先驅Prof Stephen Emlen - Vox
遷徙的雀鳥運用量子原理感應磁力 - Scientific American
狗狗便便的方向 - 狗也能夠感應到磁場?
Hart, V., Nováková, P., Malkemper, E. P., Begall, S., Hanzal, V., Ježek, M., ... & Burda, H. (2013). Dogs are sensitive to small variations of the Earth’s magnetic field. Frontiers in Zoology , 10 (1), 1-12.
人都得?- 研究人類磁場感應的實驗室
人能夠感應到磁場嗎?- Veritasium
Keith’s Section
大衛·希爾伯特 David Hilbert - Wikipedia
無限旅館 Infinite Hotel - Wikipedia
One Two Three... Infinity by George Gamow - Wikipedia
有無限個質數?! - Wikipedia
所有數都只係得唯一一個質因數連乘式? - Wikipedia
製造大啲嘅無限嘅方法 Power Set - Wikipedia
Aleph ℵ - Wikipedia
連續統假設 Continuum Hypothesis - Wikipedia
康托爾 Georg Cantor - Wikipedia
保羅·寇恩 Paul Cohen - Wikipedia
延伸閲讀 Further Reading
An infinite number of $1 bills and an infinite number of $20 bills would be worth the same - Stand-Up Maths
13 Jan 2023 搞乜咁科學 #11 - 2022新發現 New in 22’🗓 01:00:19 歡迎嚟到 搞乜咁科學 GMG Science 第11集!
今集嘅主題係2022新發現 New in 22’🗓!Keith會講數學家點樣將個圓形變成正方形,Abellona會解釋有咩方法製造到萬能嘅流感疫苗?
喂!好奇心,係時候醒喇 :)
Social Media:
科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎
搞乜咁科學網頁 搞乜咁科學 IG 搞乜咁科學 YouTube Abellona IG Keith IG Keith YouTube
Show Notes and Links:
大部份今集有關嘅圖片會係我哋IG見到㗎
Keith’s part
學寫電腦程式竟然同學語言能力有關﹐反而同數感無乜關係? - Prat, C. S., et al. (2020). Relating natural language aptitude to individual differences in learning programming languages. Scientific reports , 10 (1), 1-10.
較剪全等 Scissor Congruence - nLab
三大尺規作圖問題 Impossible Constructions - Wikipedia
正方形原來係剪唔到變圓形㗎…
Dubins, L., Hirsch, MW, & Karush, J. (1963). Scissor congruence. Israel Journal of Mathematics , 1(4), 239-247.
可等分解 Equidecomposable - Wolfram MathWorld
…但分解佢就得喇!
Laczkovich, M. (1990). Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem. , 1990 (404), 77-117.
宇宙有幾多原子?好多囉 - US Department of Energy’s Jefferson Lab
🟥 ➡️ 🔴 嘅進展
Grabowski, L., Máthé, A., & Pikhurko, O. (2016). Measurable equidecompositions for group actions with an expansion property, accepted by J. Eur. Math. Soc., E-print arxiv , 1601 .
Marks, A. S., & Unger, S. T. (2017). Borel circle squaring. Annals of Mathematics , 186 (2), 581-605.
終於變到喇!
Máthé, A., Noel, J. A., & Pikhurko, O. (2022). Circle Squaring with Pieces of Small Boundary and Low Borel Complexity. arXiv preprint arXiv:2202.01412 .
正方形點變做圓形,去片!
Abellona’s part
過去一百年的流感大流行歷史 – CDC
流感病毒的結構
現時的流感疫苗是怎樣製造的
流感病毒撠手的地方: Antigen shift 抗原轉變 & Antigen drift 抗原飄移
研發萬能流感疫苗的策略
策略一: 同時針對多種HA亞種的mRNA疫苗
Arevalo, C.P., et al, 2022. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science , 378 (6622), pp.899-904.
策略二: 誘使免疫系統針對HA的莖部的疫苗
Nachbagauer, R., et al., 2021. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nature medicine , 27 (1), pp.106-114.
策略三: 針對流感病毒表面的其他蛋白
Kim, K.H., et al., 2022. Universal protection against influenza viruses by multi-subtype neuraminidase and M2 ectodomain virus-like particle. PLoS pathogens , 18 (8), p.e1010755.
10 Feb 2023 搞乜咁科學 #12 - 窿窿 Holes 🕳️ 01:00:07 31 Mar 2023 搞乜咁科學 #13 - 知覺 Sense 🙈 01:23:46 歡迎嚟到 搞乜咁科學 GMG Science 第13集!
今集嘅主題知覺Sense🙈! Keith 會解釋1同9中間究竟係幾多 (提示: 唔係5) 🧮 Abellona 會講我地係點樣畀我地嘅視覺呃咗?👀
喂!好奇心,係時候醒喇 :)
Social Media:
科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7
搞乜咁科學網頁: www.gmgscience.com
搞乜咁科學 IG: www.instagram.com/gmgscience
搞乜咁科學 YouTube: https://www.youtube.com/channel/UCFj2cwjDASS2SyYsj3pkNSQ
Abellona IG: www.instagram.com/_doctor_u
Keith IG: www.instagram.com/keith.poonsir
Keith YouTube: https://youtube.com/c/KeithPoonSir
Show Notes and Links:
大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience
苜苜 @mukmuk.studio
ChatGPT - OpenAI
Keith’s part
對數 Logarithm - Wikipedia
心理物理學 Psychophysics - Wikipedia
韋伯-費希納定理 Weber–Fechner law - Wikipedia
分貝 Decibel - Wikipedia
Can Silence Actually Drive You Crazy? - Veritasium
小朋友或者偏遠地區的人會覺得 1 同 9 中間唔係 5 ? - MIT News
最小可覺差 Just Noticeable Difference - Wikipedia
Psychophysics of Prices Paradox - JSTOR
延伸閱讀:
1,2,3,4,5,6,7,8,9,10,11,12,13 … - Vsauce
Abellona’s part
Akiyoshi Kitaoka - 佢嘅眼睛係咩顏色?
世紀爭議: 條裙咩色 The Dress - Wikipedia
Akiyoshi Kitaoka - 士多啤梨的顏色
顏色恆常性 - Wikipedia
傳籃球 1.0 版本 - Selective Attention Test
傳籃球 2.0 版本 - The Monkey Business Illusion
“Whodunnit?”
轉咗個人都察覺唔到? - The Door Study
Simons, D.J., Levin, D.T. (1998) Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin & Review 5, 644–649. Kennedy, K. D., Stephens, C. L., Williams, R. A., & Schutte, P. C. (2014) Automation and Inattentional Blindness in a Simulated Flight Task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 58 (1), 2058–2062.
推介:
廢中俱樂部
講經
Overcast
Pocket Casts
05 May 2023 搞乜咁科學 #14 - 地圖 Map 🗺 01:34:38 11 Aug 2023 搞乜咁科學 #15 - 賭博 Gamble🎰 01:31:59 歡迎嚟到 搞乜咁科學 GMG Science 第15集!
今集嘅主題係賭博Gamble🎰!Keith會講點解堅持努力唔係一定好,Abellona會講消毒酒精殺淨嗰0.01%細菌病毒去咗邊??
喂!好奇心,係時候醒喇 :)
Social Media:
科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7
搞乜咁科學網頁: www.gmgscience.com
搞乜咁科學 IG: @gmgscience
搞乜咁科學 YouTube: https://www.youtube.com/@gmgscience
Abellona IG: @_doctor_u
Keith IG: @keith.poonsir
Keith YouTube: www.youtube.com/@KeithPoonSir
後期製作 阿Long IG: @arlongphotog.hk
Show Notes and Links:
大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience
更正~
06:04 - Keith話蘇格蘭傳統樂器真確應該叫風笛 Bagpipes
06:23 - Abellona 手風琴嘅左手邊應該係有六列
Abellona的部分
Framing effect 框架效應 - Wikipedia
Loss aversion 損失規避 - Wikipedia
Endowment Effect 禀賦效應 - Wikipedia
Prospect theory 展望理论 - Wikipedia
經典原文:
Kahneman, D. and Tversky, A., 2013. Prospect theory: An analysis of decision under risk. In Handbook of the fundamentals of financial decision making: Part I (pp. 99-127).
Tversky, A. and Kahneman, D., 1981. The framing of decisions and the psychology of choice. Science , 211 (4481), pp.453-458.
後扣帶皮層厚度(Posterior cingulate cortex)與中年過後漸增的損失規避的關係
Guttman, Z.R., Ghahremani, D.G., Pochon, J.B., Dean, A.C. and London, E.D., 2021. Age influences loss aversion through effects on posterior cingulate cortical thickness. Frontiers in Neuroscience , 15 , p.673106.
延伸閱讀:
Thinking Fast and Slow by Daniel Kahneman
Keith的部分 大部份嘅人用緊錯嘅方法去溫書!你有無中呢個伏? - The Myth of Rereading - YouTube
輪盤 Roulette - Wikipedia
骰寶 Sic Bo - Wikipedia
博弈論 Game Theory - Wikipedia
馮紐曼 John von Neumann - Wikipedia
Thinking in Bet by Annie Duke
Quit by Annie Duke
斯蒂格勒 George Stigler - Wikipedia
Regression toward the mean - Wikipedia
Grit - Wikipedia
達克沃斯 Angela Duckworth - Wikipedia
承諾升級 Escalation of commitment - Wikipedia
01 Sep 2023 搞乜咁科學 #16 - 散播 Spread🧈 01:16:28 歡迎嚟到 搞乜咁科學 GMG Science 第16集!
今集嘅主題係散播 Spread🧈!Keith會講有咩會好似病毒咁傳播,但唔洗見面都傳得好快?😯 Abellona就講一個水喉柄竟然係殺死幾百人嘅元兇?🚰
喂!好奇心,係時候醒喇 :)
Social Media:
科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎
搞乜咁科學網頁
搞乜咁科學 IG - 大部份今集有關嘅圖片會係我哋IG見到㗎
搞乜咁科學 YouTube
Abellona IG
Keith IG
Keith YouTube
Keith 的部分
R0 - Wikipedia
社交網絡看遙言傳播 - Wikipedia
遙言傳播SIR Model的原文 Daley, D.J., and Kendal, D.G. 1965 Stochastic rumors, J. Inst. Maths Applics 1, p. 42.
郭富城失去了一切 - HK01
Fedewa, N., Krause, E., & Sisson, A. (2013). Spread of a rumor. Society for Industrial and Applied Mathematics. Central Michigan University , 25 , 977-1002.
Chen, X., & Wang, N. (2020). Rumor spreading model considering rumor credibility, correlation and crowd classification based on personality. Scientific Reports , 10 (1), 5887.
Paek, H. J., & Hove, T. (2019). Effective strategies for responding to rumors about risks: the case of radiation-contaminated food in South Korea. Public Relations Review , 45 (3), 101762.
Abellona 的部分
Antonie van Leeuwenhoek - Wikipedia
Animalcule - Wikipedia
Pasteur and Spontaneous Generation - 巴斯德推翻自然發生論的實驗
Miasma theory - Wikipedia
Germ theory - Wikipedia
1854年倫敦Broad Street霍亂爆發 - Wikipedia
John Snow - Wikipedia
Tulchinsky, T.H., 2018. John Snow, cholera, the broad street pump; waterborne diseases then and now. Case studies in public health , p.77.
England: The Broad Street Pump - You Know Nothing, John Snow - Extra History - YouTube
1894年香港鼠疫 - Wikipedia
Alexandre Yersin - Wikipedia
鼠疫桿菌 - Wikipedia
延伸閱讀
The Ghost Map by Steven Johnson
亦推介參訪香港醫學博物館
好書推介
The Housekeeper and the Professor by Yoko Ogawa
博士熱愛的算式 – 小川洋子
06 Oct 2023 搞乜咁科學 #17 - 食物 Food🍔 01:03:40 03 Nov 2023 搞乜咁科學 #18 - 學習 Learn📚 01:13:34 歡迎嚟到 搞乜咁科學 GMG Science 第18集!
今集嘅主題係學習 Learn!Keith會講一個秘訣:點樣令到一個數學差嘅人變成一個讀到數學嘅人。Abellona會解釋點樣避免唔記得嘢?
喂!好奇心,係時候醒喇 :)
Social Media:
科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7
搞乜咁科學網頁: www.gmgscience.com
搞乜咁科學 IG: www.instagram.com/gmgscience
搞乜咁科學 YouTube: https://www.youtube.com/@gmgscience
Abellona IG: www.instagram.com/_doctor_u
Keith IG: www.instagram.com/keith.poonsir
Keith YouTube: www.youtube.com/@KeithPoonSir
後期製作 Ah Long IG: www.instagram.com/arlongphotog.hk
Show Notes and Links:
大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience
Keith's Part
1904年第一次出現Bridal Showers嘅報紙
成長思維令同學數學成績反彈?
Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child development , 78 (1), 246-263.
Ali Abdaal 的 科學實證有效率的謢膚Routine
Abellona's Part
Soča River - Wikipedia
香港廣東話版蒙特利爾智力測試
Hermann Ebbinghaus - Wikipedia
Forgetting curve - Wikipedia
Atkinson-Shiffrin Memory Model - Wikipedia
The Magical Number Seven, Plus or Minus Two - Wikipedia
The Magical Number Seven, Plus or Minus Two by George Miller 原文
Working Memory Model by Baddeley and Hitch
https://www.simplypsychology.org/working-memory.html
Hoosain, R., & Salili, F. (1987). Language differences in pronunciation speed for numbers, digit span, and mathematical ability. Psychologia: An International Journal of Psychology in the Orient .
Spaced Repetition - Wikipedia
How pasta became political in Italy - FT
01 Dec 2023 搞乜咁科學 #19 - 破解 Decipher🗝 01:24:42 12 Jan 2024 搞乜咁科學 #20 - 2023新發現 New in '23 🪄 01:34:39 16 Feb 2024 搞乜咁科學 #21 - 聲音 Sound 🔊 01:44:58 08 Mar 2024 搞乜咁科學 #22 - 成長 Growth 🌱 01:26:35 05 Apr 2024 搞乜咁科學 #23 - 根源 Origin 📍 01:15:42 10 May 2024 搞乜咁科學 #24 - 嘉賓: 唔係醫生 Guest: Not A Doctor 🎧 01:28:28 07 Jun 2024 搞乜咁科學 #25 - 讀書會 Book Club '24 📚 01:18:38 08 Sep 2024 搞乜咁科學 #26 - Bonus: Keith 喺劍橋?! 🇬🇧 00:27:48 ⚠️特發⚠️
Keith 同 Abellona 竟然同時喺英國劍橋出現,仲錄左集Bonus Episode?! 想知佢地喺撐完船半醉半醒嘅時候,同埋Keith俾Abellona迫左去做苦力之前,吹左啲咩水就快啲聽啦~
09 Dec 2024 搞乜咁科學 #27 - 蛋白界奧運 Protein Olympics🍳 00:53:55 23 Dec 2024 搞乜咁科學 #28 - 算命佬篤手指 - Your Fate, Your Fingers 🤘 00:44:21 13 Jan 2025 搞乜咁科學 #29 - 幹細胞係能幹細胞 The Almighty Stem Cells 🎖️ 00:53:44 03 Feb 2025 搞乜咁科學 #30 - 質數與大姨媽 Prime & Big Auntie 👀 00:48:23 14 Feb 2025 搞乜咁科學 #31 - 迷你Barcode與迷你生物 Mini Barcodes & Mini Creatures🔍 00:54:00 05 Mar 2025 搞乜咁科學 #32 - 罕見立體與太空企鵝 Rare solids and Penguin in the Sky 🧊 00:52:47 17 Mar 2025 搞乜咁科學 #33 - 一個人生B與叻過Chat GPT Making Baby DIY & Outsmarting AI 🍼 01:00:46 歡迎嚟到 搞乜咁科學 GMG Science 第33集!
今集嘅主題係《一個人生B與叻過ChatGPT Baby Making DIY & Human Outsmarting AI》🍼!Abellona講唔洗精子卵子都可以做到B? 🐣 Keith會講有咩你肯定叻過啲AI?!🤔
喂!好奇心,係時候醒喇 :)
Social Media:
科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: http://hello.gmgscience.com/
搞乜咁科學網頁: http://www.gmgscience.com
搞乜咁科學 IG: http://www.instagram.com/gmgscience
搞乜咁科學 YouTube: https://www.youtube.com/@gmgscience
Abellona IG: http://www.instagram.com/_doctor_u
Keith IG: http://www.instagram.com/keith.poonsir
Keith YouTube: http://www.youtube.com/@KeithPoonSir
後期製作 Ah Long IG: http://www.instagram.com/arlongphotog.hk
Show Notes and Links:
大部份今集有關嘅圖片會係我哋IG見到㗎: http://www.instagram.com/gmgscience
Abellona’s Part
體外人工受精 In vitro fertilisation - Wikipedia
改編自體外人工受精背後嘅故事嘅電影:Joy - Film
易入口d介紹體外人工製造卵子技術最新發展嘅文章:
Making Eggs Without Ovaries - Asimov Press
體外人工製造配子技術嘅科學雜誌總結:
Mitinori Saitou, Katsuhiko Hayashi ,Mammalian in vitro gametogenesis.Science 374 ,eaaz6830(2021).DOI:10.1126/science.aaz6830
第一步:將幹細胞引導為初始生殖細胞,即係精子卵子嘅前驅細胞:
Hikabe, O., Hamazaki, N., Nagamatsu, G. et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539 , 299–303 (2016). https://doi.org/10.1038/nature20104
第二步:使初始生殖細胞重寫佢DNA上面嘅tag (Epigenetic modification):
Murase, Y., Yokogawa, R., Yabuta, Y. et al. In vitro reconstitution of epigenetic reprogramming in the human germ line. Nature 631 , 170–178 (2024). https://doi.org/10.1038/s41586-024-07526-6
第三步:有正確數量嘅染色體,分別係由兩個copy 變一個copy:
Aleksei Mikhalchenko et al. ,Induction of somatic cell haploidy by premature cell division. Sci. Adv. 10 ,eadk9001(2024).DOI:10.1126/sciadv.adk9001
同埋如果要將來自男性嘅細胞變成卵子,要由XY變成XX:
Murakami, K., Hamazaki, N., Hamada, N. et al. Generation of functional oocytes from male mice in vitro. Nature 615 , 900–906 (2023). https://doi.org/10.1038/s41586-023-05834-x
第四部:培殖發展為成熟嘅精子/卵子
Takashi Yoshino et al. ,Generation of ovarian follicles from mouse pluripotent stem cells.Science 373 ,eabe0237(2021).DOI:10.1126/science.abe0237
嘗試發展呢嘅技術嘅生物技術初創,例如:https://conception.bio
Keith’s Part
Ned Block 講 AI - Robinson Erhardt on YouTube
07 Apr 2025 搞乜咁科學 #34 - 無可能都會發生與用念力瘦身 Improbable Hits & Mindfulness to Stay Fit 🐘 00:45:11